
 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 1 

 

1 Scope  

This document presents recommended practices regarding the TV 3.0 Closed Signing, defined in [1].  

2 References 

The following documents are cited in the text in such a way that their contents, in whole or in part, constitute 
requirements for this document. For dated references, only the editions cited apply. For undated references, the 
most recent editions of that document (including amendments) apply. 

ABNT NBR 25606, TV 3.0 – Closed Signing.  

3 Abbreviations 

For the purposes of this Document, the following abbreviations apply. 

BVH BioVision Hierarchy 

DASH Dynamic Adaptive Streaming over HTTP 

DTT Digital Terrestrial Television 

glTF graphics library Transmission Format 

IMSC Internet Media Subtitles and Captions 

ISOBMFF International Organization for Standardization Base Media File Format 

JSON JavaScript Object Notation 

4 Guideline organization 

This guideline covers four strategies for sign language transmission. The operational guidelines corresponding 
to the technologies used in the TV 3.0 Closed Signing are contained in the following Annexes: 

● Annex A contains the Sign Language Video Stream guidelines (future development); 
● Annex B contains the Sign Language Gloss guidelines; 
● Annex C contains the Closed Caption Streaming for automatic translation and adaptation to Sign 

Language guidelines; 
● Annex D contains the Sign Language Motion Stream guidelines;. 

In order to streamline the documentation and prevent repetition, all sign language representation guidelines are 
hosted in Annex R. Both Annex B and Annex C refer to this central document for linguistic and structural 
specifications. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 2 

 

Annex R 
 

Sign Language Representation 

This Annex defines the standardized framework for the digital representation and structuring of sign language 
data within the TV 3.0 ecosystem. Its primary objective is to bridge the gap between linguistic nuances and 
technical implementation, ensuring that sign language content—whether human-captured or synthetic—
maintains its grammatical integrity during transmission and rendering. By establishing a uniform syntax for 
glosses and metadata, this document ensures interoperability across different platforms and decoding devices, 
ultimately guaranteeing an accessible and high-quality experience for the deaf community. 

R.1 Rules for Representing Sign Languages Glosses 

This section specifies the rules for representing sign language glosses. These rules are necessary to specify 
grammatical aspects essential for sign languages and to allow for proper decoding of glosses in the sign language 
player. 

It is essential to mention that these rules were developed for Brazilian Sign Language, but they are easily 
adaptable to any other sign language. 

R.1.1 Homonyms and homographs 

In this representation, words that have identical spelling in the written language (for example, Brazilian 
Portuguese) and different signs in the sign language, which are called homonyms, must receive a descriptive 
nomenclature at the end of the glosses, representing the context of the sign. The character “&” shall be used to 
represent the disambiguation.  

 

Tables 1 and 2 illustrate the homonyms COLAR and APAGAR in Brazilian Portuguese, and the variations in the 
Brazilian Sign Language using the proposed rule. Tables 3 and 4 illustrate some examples of glosses using these 
variations. 

Table 1 - Homonyms COLAR and its variations in Brazilian Sign Language 

HOMONYMS VARIATIONS (GLOSS REPRESENTATION) 

 

COLAR 
 

COLAR&ACESSÓRIO 

(NECKLACE&ACCESSORY) 
 

COLAR&GRUDAR 

(PASTE&STICK) 
 

COLAR&FILAR 

(CHEAT&CHEAT) 

COLAR&INFORMÁTICA 

(PASTE&INFORMATICS) 
 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 3 

 

 

 

Table 2 - Homonyms APAGAR and its variations in Brazilian Sign Language 

HOMONYMS VARIAÇÕES 

APAGAR APAGAR&EXTINGUIR 

(DELETE&EXTINGUIS) 

APAGAR&FOGO 

(PUT_OUT&FIRE) 

APAGAR&INFORMÁTICA 

(DELETE&INFORMATICS) 

APAGAR&ESCREVER 

(ERASE&WRITE) 

APAGAR&LOUSA 

(ERASE&BLACKBOARD) 

APAGAR&LUZ 

(TURN_OFF&LIGHT) 

APAGAR&VELA 

(TURN_OFF&CANDLE) 

 

Table 3 - Examples of using the homonym COLAR and its variations. 

INPUT SENTENCE RULE APPLIED 

Ganhei um colar da minha vó. 

(I got a necklace from my grandmother.) 

GANHAR COLAR&ACESSÓRIO MEU VÓ [PONTO] 

(GET NECKLACE&ACCESSORY MY GRANDFATHER 
[PERIOD]) 

É errado colar na prova. 

(It's wrong to cheat on the test.) 

ERRADO COLAR&FILAR PROVA [PONTO] 

WRONG CHEAT&CHEAT TEST [PERIOD] 

O papel está todo colado. 

(The paper is all glued together.) 

PAPEL COLAR&GRUDAR [PONTO] 

(PAPER PASTE&STICK [PERIOD]) 

Copie e cole o texto. 

(Copy and paste the text.) 

COPIAR COLAR&INFORMÁTICA TEXTO [PONTO] 

(COPY PASTE&NFORMATICS TEXT [PERIOD]) 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 4 

 

 

 

Table 4 -  Examples of using the homonym APAGAR and its variations 

INPUT SENTENCE GLOSS REPRESENTATION 

Cuidado, apague o fogo! 

(Be careful, put out the fire!) 

CUIDADO APAGAR&FOGO [EXCLAMAÇÃO] 

(CAREFUL, PUT_OUT&FIRE [EXCLAMATION]) 

Apague essa sentença. 

(Delete this sentence.) 

APAGAR&INFORMÁTICA SENTENÇA [PONTO] 

(DELETE&INFORMATICS SENTENCE [PERIOD]) 

Apague meu nome da lista. 

(Delete my name from the list.) 

APAGAR&ESCREVER NOME LISTA[PONTO] 

(ERASE&WRITE NAME LIST [PERIOD]) 

Posso apagar o quadro? 

(Can I erase the painting?) 

EU PODER APAGAR&LOUSA [INTERROGAÇÃO] 

(I CAN ERASE&BLACKBOARD [QUESTION]) 

Entre e apague a luz. 

(Come in and turn off the light.) 

ENTRAR APAGAR&LUZ [PONTO] 

(COME IN TURN_OFF&LIGHT) 

Apague as velas e faça um pedido. 

(Extinguish the candles and make a wish.) 

APAGAR&VELA FAZER PEDIDO&PEDIR [PONTO] 

(TURN_OFF&CANDLE MAKE ORDER&ORDER [PERIOD]) 

This rule enables correct translation considering the semantics and pragmatics of sign languages, as it allows 
the disambiguation of homonyms and homographs since, in the translation process, some signs may be more 
specific. Therefore, the translation must consider the meaning of the lexical item of the written language for a 
corresponding lexical item in sign language. 

 

R.1.2 Punctuation marks 

In the notation used for representing the sign language glosses, the punctuation identifying characters (“.”, “!” 
and “?”) shall be replaced by the spelling of the name in full between square brackets. Table 5 shows the 
representation of punctuation marks in this representation. 

 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 5 

 

Table 5 - Punctuation marks 

PUNCTUATION MARK GLOSS REPRESENTATION 

Period: . [PONTO] OR [PERIOD] 

Exclamation Mark: ! [EXCLAMAÇÃO] OR [EXCLAMATION] 

Question Mark: ? [INTERROGAÇÃO] OR [INTERROGATION] 

 

R.1.3 Adjectives: Unification of the gender of adjectives 

In sign languages, adjectives are generally in the neutral form. Therefore, there is no marker for gender 
(masculine and feminine) nor for number (singular and plural) (BRITO, 2013, p. 63). Thus, in this gloss 
representation, the adjectives shall be inflected in the masculine to simplify the computational process.  

Table 6 presents one example of the use of this rule involving adjectives. 

Table 6 - Adjectives 

INPUT SENTENCE GLOSS REPRESENTATION 

Essa flor é cheirosa! 

(This flower is smelly!) 

ESSE FLOR CHEIROSO [EXCLAMAÇÃO] 

(THIS FLOWER SMELLY [EXCLAMATION]) 

 

R.1.4 Numerical Representations 

In sign languages, there are different ways to present numerals when used as cardinals, ordinals, quantity, 
measurement, age, days of the week or month, hours, and monetary values. (FELIPE, 2007, p. 43). Concerning 
cardinal numbers, the rule is that notation should always use the numeral (algarism) as a reference (see Table 
9). It is important to note that the signing of the sentence presented in Table 7 will be performed using the sign 
corresponding to the number 4, , not its fingerspelling the name of the number. 

Table 7 - Cardinal Numbers 

INPUT SENTENCE GLOSS REPRESENTATION 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 6 

 

Eu preciso comprar 4 cadernos. 

(I need to buy 4 notebooks.) 

EU PRECISAR COMPRAR 4 CADERNO [PONTO] 

(I NEED TO BUY 4 NOTEBOOKS [PERIOD]) 

 

Ordinal numbers are expressed in their full notation with the addition of the disambiguation identifier (“&”) to the 
ordinal numerals (from the first to the fifth number) since they are homonymous words in some written languages 
(e.g., Brazilian Portuguese). In addition, ordinal numbers are signed similarly to cardinal numbers starting from 
the 10th (tenth). Table 8 shows the application of the rule for ordinal numbers. 

 

Table 8 - Ordinal numbers 

SYMBOL GLOSS REPRESENTATION 

1º PRIMEIRO&ORDINAL 

(FIRST&ORDINAL) 

2º SEGUNDO&ORDINAL 

(SECOND&ORDINAL) 

3º TERCEIRO&ORDINAL 

(THIRD&ORDINAL) 

4º QUARTO&ORDINAL 

(FOURTH&ORDINAL) 

5º QUINTO&ORDINAL 

(FIFTH&ORDINAL) 

6º SEXTO 

(SIXTH) 

7º SÉTIMO 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 7 

 

(SEVENTH) 

8º OITAVO 

(EIGHTH) 

9º NONO 

(NINETH) 

10º 10 

11º 11 
 

 

12º 12 
 

20º 20 
 

 

When a number refers to a quantity, specific signs must be used in sign language. Regarding time, for example, 
there are two different ways of referring to time in sign languages: chronological or duration (FELIPE, 2007, p. 
78). Thus, specific signs must be used for duration. Thus, it is possible to disambiguate the numeral, 
differentiating a quantitative numeral from a representative one (see Table 9). 

 

Table 9 - Numbers and quantity 

INPUT SENTENCE GLOSS REPRESENTATION 

1 hora 

(1 hour) 

UM_HORA 

(ONE_HOUR) 

1 pessoa 

(1 person) 

UM_PESSOA 

(ONE_PERSON) 

 

To represent time, common abbreviations present in written languages must be treated and described using the 
“HORA” (HOUR), “MINUTO” (MINUTE), “SEGUNDO” (SECOND), “MANHÃ” (MORNING), “TARDE” 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 8 

 

(AFTERNOON) and “NOITE” (NIGHT) glosses, among others. Table 10 presents two examples of time treatment 
in gloss. 

 

Table 10 - Time period 

INPUT SENTENCE GLOSS REPRESENTAION  

São 3h30. 

(It is 3:30 am.) 

3 HORA 30 MINUTO MANHÃ [PONTO] 

(3 HOUR 30 MINUTE MORNING [PERIOD]) 

A reunião será às 14h30. 

(The meeting will be at 2:30 pm.) 

REUNIÃO 2 HORA 30 MINUTO TARDE [PONTO] 

(MEETING 2 HOUR 30 MINUTES AFTERNOON [PERIOD]) 

 

It is also common in sign languages to have a different numerical representation for fractions, percentages, and 
currency. In this notation, the following representation will be adopted: 

 
 

• Fraction: The fraction symbol will be replaced by the “FRAÇÃO” (FRACTION) gloss; 

• Percentage: The percentage symbol % will be replaced by the “PORCENTAGEM” (PERCENTAGE) 
gloss; 

• Games or disputes: The X symbol will be replaced by the “VERSUS” (VERSUS) gloss; 

• Currencies: The currency symbol will be replaced by its full representation of the currency (e.g.: R$ -> 
“REAL&MOEDA” (REAL&COIN) and US$ = “DOLLAR”). 

 

Table 11 presents some examples of usage involving these numerical representations.  

 

Table 11 - Examples of different numerical representations 

INPUT SENTENCE GLOSS REPRESENTATION 

Temos ⅔ de aprovação. TER 2 FRAÇÃO 3 APROVAR [PONTO] 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 9 

 

(We have ⅔ approval.) (WE HAVE 2 FRACTION 3 APPROVE [PERIOD]) 

A música teve 25,5% de rejeição. 

(The song had 25.5% rejection.) 

MÚSICA TER 25 VÍRGULA 5 PORCENTAGEM REJEIÇÃO [PONTO] 

(MUSIC HAVE 25 COMMA 5 PERCENTAGE REJECTION 
[PERIOD]) 

Fluminense ganhou de 4x2 do Vasco.  

(Fluminense won 4x2 against Vasco.) 

FLUMINENSE GANHAR 4 VERSUS 2 VASCO [PONTO] 

(FLUMINENSE WIN 4 VERSUS 2 VASCO [PERIOD]) 

Eu preciso de R$ 4,99. 

(I need R$4.99.) 

EU PRECISAR 4 REAL&MOEDA 99 CENTAVOS [PONTO] 

(I NEED 4 REAL&COIN 99 CENTS [PERIOD]) 

R.1.5 Compound words or Expressions 

Compound words or expressions represented by a single sign must be separated by _ (underscore). For some 
words, it is important to mention that words in written languages are composed of more than one element. 
However, when in sign languages, they are considered as simple signs. (NASCIMENTO, 2011, p. 52). As a rule, 
this notation will also be applied to greetings which are represented as a simple sign (see Table 12). 

 

Table 12 - Compound words 

INPUT SENTENCE GLOSS REPRESENTATION 

Comprei um novo guarda-roupa. 

(I bought a new wardrobe.) 

COMPRAR GUARDA_ROUPA NOVO [PONTO] 

(BUY NEW WARDROBE [PERIOD]) 

Bom dia! 

(Good morning!) 

BOM_DIA [EXCLAMAÇÃO] 

(GOOD_MORNING [EXCLAMATION]) 

Boa tarde! 

(Good afternoon!) 

BOA_TARDE [EXCLAMAÇÃO] 

(GOOD_AFTERNOON!) 

Boa noite! 

(Good Night!) 

BOA_NOITE [EXCLAMAÇÃO] 

(GOOD_NIGHT [EXCLAMATION]) 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 10 

 

R.1.6 Verbs with number-personal agreement 

In directional verbs (or verbs with gender agreement for the person) in sign languages, the agreement between 
sender and receiver must be respected. In this sense, the notation of verbs in their infinitive form receives the 
characters *S (“*” identifies the number and “S” identifies the singular) or *P (“*” identifies the number and “P” 
identifies the plural), as nomenclatures of direction. Thus, we have the following representation for personal 
pronouns:  

• EU (I) => 1S;  

• TU/VOCÊ (YOU) => 2S; 

• ELE/ELA (HE/SHE) => 3S; 

• NÓS (WE) => 1P; 

• VÓS/VOCÊS (YOU) => 2P; 

• ELES/ELAS (THEY) => 3P. 

Tables 13 present examples of the treatment of  verbs with gender agreement in the singular and plural, 
respectively. 

Table 13 - Examples of using verbs with number-person agreement 

INPUT SENTENCE GLOSS REPRESENTATION 

Eu perguntei a sua idade. 

(I asked your age.) 

1S_PERGUNTAR_2S IDADE [PONTO] 

(1S_ASK_2S AGE [PERIOD]) 

O que você me perguntou? 

(What did you ask me?) 

2S_PERGUNTAR_1S QUE [INTERROGAÇÃO] 

(2S_ASK_1S WHAT [QUESTION]) 

Ela perguntou meu nome. 

(She asked my name.) 

3S_PERGUNTAR_1S NOME [PONTO] 

(3S_ASK_1S NAME [PERIOD]) 

Ele perguntou a ela sua idade. 

(He asked her age.) 

3S_PERGUNTAR_3S IDADE [PONTO] 

(3S_ASK_3S AGE [PERIOD]) 

Nós perguntamos a sua idade. 

(We asked your age.) 

1P_PERGUNTAR_2S IDADE [PONTO] 

(1P_ASK_2S AGE [PERIOD]) 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 11 

 

Vocês perguntam a minha idade. 

(You ask my age.) 

2P_PERGUNTAR_1S IDADE [PONTO] 

(2P_ASK_1S AGE [PERIOD]) 

Eles perguntaram a sua idade. 

(They asked your age.) 

3P_PERGUNTAR_2S IDADE [PONTO] 

(3P_ASK_2S AGE [PERIOD]) 

 

R.1.7 Incorporation of Negation 

The incorporation of negation initially applies to verbs when the negation adverb is modified in the direct or indirect 
object. In this case, it is possible to simplify by saying that if the NEGATION signing can be done simultaneously 
with a word (verb), this specific rule must be applied. In negative sentences, the movement of the head (denying) 
and facial expressions are mandatory to mark negative sentences, as they are directly linked to syntactic issues; 
otherwise, the sentence will become ungrammatical. (ALMEIDA; ALMEIDA, 2012, p. 628).  

In this gloss notation, the incorporation of negation is done by incorporating the prefix “NÃO_” (NOT_) into the 
sign, to facilitate the reading of the description. Table 14 presents two examples of the application of this rule. 

Table 14 - Examples of using incorporation of negation 

INPUT SENTENCE GLOSS REPRESENTATION 

Eu não posso mais esperar. 

(I can't wait anymore.) 

EU NÃO_PODER ESPERAR [PONTO] 

(I NOT_CAN WAIT [PERIOD]) 

Ele não consegue ganhar. 

(He can't win.) 

ELE NÃO_CONSEGUIR GANHAR [PONTO] 

(HE NOT_CAN WIN [POINT]) 

 

R.1.8 Amplification and reduction of intensity 

Intensifiers are used when the word, verb or expression is close to some adverb of intensity. This intensity is 
characterized by the sign's duration, energy, variance, and average speed (PASSOS, 2014, p.19). In this 
representation, the markers "(+)" or "(-)" should be inserted at the end of the word to represent the intensifier. In 
this case, the adverbs of intensity "muito" (very), "mais" (more), "muitíssimo" (very much) and their synonyms will 
be represented by the marker "(+)" at the end of the word. In contrast, the adverbs "pouco" (little), "menos" (less), 
“pouquíssimo" (very little) and their synonyms will be represented by the marker "(-)" at the end of the word. 

Table 15 presents some examples of the application of the rule in sentences with increased and reduced intensity. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 12 

 

Table 15 -Examples of using amplification and reduction of intensity 

INPUT SENTENCE RULE APPLIED 

Ele está muito deprimido. 

(He is very depressed.) 

ELE DEPRIMIDO(+) [PONTO] 

(HE DEPRESSED(+) [PERIOD]) 

Ela é tão bonita! 

(She is so pretty!) 

ELE BONITO(+) [EXCLAMAÇÃO] 

(HE BEAUTIFUL(+) [EXCLAMATION]) 

Você está nervoso demais. 

(You are too nervous.) 

VOCÊ NERVOSO(+) [PONTO] 

(YOU NERVOUS(+) [PERIOD]) 

Estou um pouco doente. 

(I am a little sick.) 

EU DOENTE(-) [PONTO] 

(I SICK(-) [DOT]) 

 
 

R.2 Accessing Sign Animations via URL 

 

This section outlines the standard URL format to access and download sign animations from the public dictionary. 
The link is constructed using the sign's unique gloss, allowing applications to programmatically retrieve the correct 
animation file for integration and playback. 

As an example, the animation for the CASA gloss can be found at: 
https://dicionario2.vlibras.gov.br/2018.3.1/WEBGL/CASA 

The full list of signs available in the dictionary can be viewed here: https://dicionario2.vlibras.gov.br/bundles 

  



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 13 

 

Annex A 
 

Sign Language Video Stream 

[Annex A is under development in a separate document. This is just a placeholder to add its contents when 
completed.] 

 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 14 

 

Annex B 
 

Sign Language Gloss 

B.1 Scope 

This document specifies the workflow for sign language integration when translation is performed prior to 
transmission (Source-side). In this workflow, the sign language gloss content is generated and packaged at the 
broadcast station. 

B.2 Sign Language Representation 

The sign language representations and glossing rules used in this technology are governed by the specifications 
detailed in Annex R (Sign Language Representation).  

B.3 Operational Workflow 

The broadcaster operates by multiplexing and transmitting audio, video, and a sequence of sign language glosses 
in IMSC1 format via Over-the-Top (OTT) or Over-the-Air (OTA) signals. Upon reception, a registered application 
accesses the stream through the API mechanism specified in ABNT NBR 25608, Annex C. 

In this Receiver-side (Client-side) architecture, the application performs the rendering for each sentence of 
glosses contained within <span> tags, which are identified by the attribute xml:lang="bzs". The sign dictionary 
and the sign player components are fully embedded and executed within the application, running either on the 
TV 3.0 receiver or a connected companion device. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 15 

 

Annex C 
 

Closed Caption Streaming 
for automatic translation and adaptation to Sign Language 

C.1 Scope 

This document specifies the workflow for sign language generation when translation is performed after reception 
(Receiver-side). In this workflow, the translation process-often involving synthetic sign language generation 
(avatars) or dynamic data rendering-is executed directly Digital Television Receiver or on a connected second-
screen device. 

C.2 Sign Language Representation 

The sign language representations and glossing rules used in this technology are governed by the specifications 
detailed in Annex R (Sign Language Representation).  

C.3 Operational Workflow 

The broadcaster operates by multiplexing and transmitting audio, video, and written-language closed captioning 
via Over-the-Top (OTT) or Over-the-Air (OTA) signals. Upon reception, a registered application accesses the 
closed caption stream through the API mechanism specified in ABNT NBR 25608. 

At Receiver-side (Client-side) architecture, the application performs the automatic translation into sign language 
locally. Following this translation, the application handles the rendering for each generated sentence. The sign 
language translator, the sign dictionary, and the sign player components are fully embedded and executed within 
the application, running either on the TV 3.0 receiver or a connected companion device. 

  



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 16 

 

Annex D 
 

Sign Language Motion Stream 

      

D.1 Scope 

This document defines the operational guidelines for transmission of sign language motion stream through TV 
3.0 broadcasting signal, aiming to provide sign language interpretation to DTT receiver using a three-dimensional 
humanoid avatar. This transmission is specified in ABNT NBR 25606     , Annex D. 

D.2 Motion file format conversion 

D.2.1 Scope  

This guideline assumes that the SLMB format defined in ABNT NBR 25606     , D.5, is not supported by any 
known animation software in the market. So, it proposes a detailed description of the methods to convert a SLMB 
file to some known motion file formats, and vice-versa. 

D.2.2 Parameters 

In the conversion pseudo-codes related to SLMB motion blocks, it is assumed that 

● the parameters starting with geo are from body geometry 
o the x/y/z components of the vectors geo.refpose_from_parent (position of joint from 

parent in reference pose) and geo.refpose_end (position of end of joint in reference pose) 
in a joint can be gotten from ABNT NBR 25606     , Table D.3.  

o the x/y/z components of the vectors geo.RX, geo.RY and geo.RZ in type-2 and type-3 
joints (coordinates of the rotation axes) can be gotten from ABNT NBR 25606     , Table D.5. 

● the parameters starting with bmb are from the BodyMotionBlock structure, as defined in ABNT 
NBR 25606     , Table D.8. 

● the parameters starting with fmb are from the FaceMotionBlock structure, as defined in ABNT 
NBR 25606     , Table D.10. 
 

D.2.3 Rotation format conversion 

As stated in ABNT NBR 25606     , D.3.4, joint rotation can be defined by Euler angles or by quaternions. Each 
motion file format declares joint rotation using one of these definitions. SLMB files applies quaternions in some 
joints and Euler angles in other joints, using x/y/z rotation sequence. So, for some joint rotation movements, 
conversion between body motion formats requires conversion from Euler angles to quaternion and vice-versa.  

For these conversion codes the following parameters and functions are assumed: 

● Ex, Ey and Ez are Euler angles around x, y and z rotation axes, respectively. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 17 

 

● RX, RY and RZ are the normalized coordinates of the x, y and z rotation axes, respectively. They are 
represented by the x, y and z elements, referring to the x/y/z coordinates of the rotation axes. 

● qw, qx, qy and qz are the elements of the quaternion. 
● wrap_to_degree() function ensures that the angles are converted to degrees and stays in (-180°, 

180°] interval. 

Previously, it is necessary to define rotation matrix from coordinate axis to rotation axis. 

 
rotationaxisToquaternion(Rx, Ry, Rz) 

{  

    qw = sqrt(1 + Rx.x + Ry.y + Rz.z) / 2 

    qx = (Ry.z – Rz.y) / (4*qw) 

    qy = (Rz.x – Rx.z) / (4*qw) 

    qz = (Rx.y – Ry.z) / (4*qw) 

    return (qw, qx, qy, qz) 

} 

 

The conversion from Euler angles in y/x/z sequence (adopted in most BVH formats) to quaternion can be done 
by applying three Euler rotations in y/x/z sequence.  

 
euler2quaternion_yxz(Ex, Ey, Ez, RX, RY, RZ)  

{ 

    Qr = rotationaxisToquaternion(Rx, Ry, Rz) 

    Qex = (cos(Ex/2), sin(Ex/2), 0, 0) 

    Qey = (cos(Ey/2), 0, sin(Ey/2), 0) 

    Qez = (cos(Ez/2), 0, 0, sin(Ez/2)) 

    (qw, qx, qy, qz) = Qez * Qex * Qey * Qr 

    return (qw, qx, qy, qz) 

} 

The conversion from Euler angles in x/y/z sequence (adopted in SLMB file format) to quaternion can be done 
by applying three Euler rotations in x/y/z sequence. 

 
euler2quaternion_xyz(Ex, Ey, Ez, RX, RY, RZ)  

{ 

    Qr = rotationaxisToquaternion(Rx, Ry, Rz) 

    Qex = (cos(Ex/2), sin(Ex/2), 0, 0) 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 18 

 

    Qey = (cos(Ey/2), 0, sin(Ey/2), 0) 

    Qez = (cos(Ez/2), 0, 0, sin(Ez/2)) 

    (qw, qx, qy, qz) = Qez * Qey * Qex * Qr 

    return (qw, qx, qy, qz) 

} 

The algorithm to convert quaternion to Euler angles is described in the paper Quaternion to Euler angles 
conversion: A direct, general and computationally efficient method. 

The conversion from quaternion to Euler angles in y/x/z sequence can be done with the following pseudo-code: 

 
quaternion2euler_yxz(qw, qx, qy, qz, RX, RY, RZ) 

{  

    Q = (qw, qx, qy, qz) 

    Qr = rotationaxisToquaternion(Rx, Ry, Rz) 

    (qRw, qRx, qRy, qRz) = Q * inverse(Qr) 

    a = qRw – qRx 

    b = qRy – qRz 

    c = qRx + qRw 

    d = -qRz – qRy 

    θ+ = atan2(b, a) 

    if (d==0 && c==0) { 

        θ- = θ+ 

    } else { 

        Θ- = atan2(d, c) 

    } 

    θ1 = θ+ – θ- 

    θ2 = acos(2 * (a^2 + b^2) / (a^2 + b^2 + c^2 + d^2) - 1) 

    θ3 = θ+ + θ- 

    Ex = wrap_to_degree (θ2 - π/2); 

    Ey = wrap_to_degree (θ1); 

    Ez = wrap_to_degree (-θ3); 

    return (Ex, Ey, Ez) 

} 

The conversion from quaternion to Euler angles in x/y/z sequence can be done with the following pseudo-code. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 19 

 

 
quaternion2euler_xyz(qw, qx, qy, qz, RX, RY, RZ) 

{  

    Q = (qw, qx, qy, qz) 

    Qr = rotationaxisToquaternion(Rx, Ry, Rz) 

    (qRw, qRx, qRy, qRz) = Q * inverse(Qr) 

    a = qRw – qRy 

    b = qRx + qRz 

    c = qRy + qRw 

    d = qRz – qRx 

    θ+ = atan2(b, a) 

    if (d==0 && c==0) { 

        θ- = θ+ 

    } else { 

        θ- = atan2(d, c) 

    } 

    θ1 = θ+ – θ- 

    θ2 = acos(2 * (a^2 + b^2) / (a^2 + b^2 + c^2 + d^2) - 1) 

    θ3 = θ+ + θ- 

    Ex = wrap_to_degree (θ1); 

    Ey = wrap_to_degree (θ2 - π/2); 

    Ez = wrap_to_degree (θ3); 

    return (Ex, Ey, Ez) 

} 

D.2.4 BVH format conversion 

D.2.4.1 Description 

BVH is a file format that defines body motion. This format is widely known by professionals in animation area, 
used by movie/game studios and supported in most motion capture software. The specification of this format is 
described in sites such as: 

● Motion Capture File Formats explained [3] (section 3.1) 
● BVH Motion Capture Data Animated [4] 
● Biovision BVH [5] 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 20 

 

The BVH file has two sections. The first section is named HIERARCHY and describes the skeleton in its 
reference pose. The second section is named MOTION and describes the joint movements along the frames.  

The syntax of a SLMB-compatible BVH file is defined in Table D.1: 

Table D.1 - BVH file format 
Syntax element Note Example 

BodyMotionBVH () {   

    HIERARCHY  HIERARCHY 

    ROOT root_joint root_joint = hips_JNT ROOT hips_JNT 

    { 
        joint_declaration(root_joint) 
    } 

joint_declaration(root_joint) 
= declaration of the root_joint. The 
syntax of this declaration is defined in 
Table D.2 

{     
    OFFSET 0.000000 0.000000 (…)  
} 

    MOTION  MOTION 

    Frames: num_frames num_frames = number of frames in 
animation 

Frames: 5 

    Frame Time: frame_time frame_time = time between frames, in 
seconds (floating point format). 

Frame Time: 0.03333334 

    for (i = 0; i < num_frames; i++) { 
        for (j = 0; j < num_joints; j++) { 
            for (k=0; k < num_channels(j); k++) { 
                <movement[i][j][k]> 
            } 
        } 
    } 

num_frames = number of frames in 
animation 
 
num_joints = number of joints of the 
skeleton 
 
num_channels(j) = number of 
channels defined in j-th joint 
 
movement[i][j][k] = value of the k-
th channel of the j-th joint movement in 
i-th frame. 

 0.280514     0.525651    -0.232078 
 0.000000    -4.000000     0.000000 
 0.000003    (...) 
 0.280495     0.525651    -0.232078 
 0.000000    -4.000000     0.000000 
-0.000081    (...) 
 0.280514     0.525649    -0.232078 
 0.000000    -4.000000     0.000000 
-0.000255    (...) 
 0.280495     0.525651    -0.232078 
 0.000000    -4.000000     0.000000 
-0.000512    (...) 
 0.280514     0.525653    -0.232078 
 0.000000    -4.000000     0.000000 
-0.001154    (...) 

}   

 
The syntax of joint_declaration(joint)is defined in Table D.2. 
 

Table D.2 - Syntax of joint_declaration(joint) 
Syntax element Note Example 

joint_declaration (joint) {   

    OFFSET ref[joint].x ref[joint].y ref[joint].z ref[joint] = x/y/z coordinates 
of reference pose of joint from its 
parent  

OFFSET 0.000000 0.000000 0.000000 

    CHANNELS num_channels[joint] 
    for (i = 0; i < num_channels[joint]; i++) { 
        channel_name[joint][i] 
    } 

num_channels[joint] = number 
of channels of the joint 
 
channel_name[joint][i] = 
name of the i-th channel of the 
joint 

CHANNELS 6 Xposition Yposition 
Zposition Zrotation Xrotation 
Yrotation 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 21 

 

Syntax element Note Example 

    if (num_children[joint] == 0) { 
    End Site 
    { 
      OFFSET refend[joint].x refend[joint].y 
refend[joint].z 
    } 
  } else { 
    for (i = 0; i < num_children[joint]; i++) { 
      child = child_joint[i][joint] 
      JOINT child 
      { 
        joint_declaration(child)     
      } 
    } 
  } 

 
num_children[joint] = number 
of children of joint 
 
refend[joint] = x/y/z 
coordinates of reference pose from 
joint to end of bone 
 
child_joint[i][joint] = i-th 
child of the joint. 
 
joint_declaration(child) = 
declaration of the child. The 
syntax of this declaration is defined 
in this table 

    JOINT spine_JNT 
    { 
        OFFSET 0.000000 4.130385 -
0.008512 
        CHANNELS 3 Zrotation 
Xrotation Yrotation 
        End Site 
        { 
            OFFSET -2.8224037 
0.000000 0.000000 
        } 
    } 

}   

 
The channels defined for joint movement may be: 

● Xposition, Yposition, Zposition: joint position in x/y/z axis. 
● Xrotation, Yrotation, Zrotation: rotation movement in Euler angles around x/y/z axis. The order 

of rotation channels defines the reverse order in which axis rotation should be done.  
 
In MOTION section, the joints are ordered according to the order in which they are presented in HIERARCHY 
section. Also, the joint movement channels are ordered according to the order presented in the field 
CHANNELS of the joint. 
 
In a SLMB-compatible BVH file, it is necessary to ensure that: 
● Skeleton and reference pose defined in HIERARCHY section are compliant with ABNT NBR 25606     . The 

values of num_children[joint] and child_joint[i][joint] can be gotten from Table D.1, 
and the values of ref[joint] can be gotten from Table D.3. 

● Channels in all joints follow the order Zrotation Xrotation Yrotation, which means that 
rotation will be done around Y, X and Z axis, in this order. 

● Joint movements obey the restrictions defined in ABNT NBR 25606     , Table D.4. 

D.2.4.2 Parameters 

In the conversion pseudo-codes related to BVH files, it is assumed that the parameters starting with bvh are 
from the BVH file format as defined in Tables D.1 an D.2. 

D.2.4.3 Conversion from BVH to SLMB body motion block 

The conversion from a SLMB-compatible BVH file to SLMB body motion block is described by pseudo-code 
below. The functions euler2quaternion_yxz and quaternion2euler_xyz are defined in D.2.3. 

 
/** Load joint information from HIERARCHY section of BVH file */ 

joint_list = <list of joints, using the same order in which they are declared in HIEARRCHY section> 

for (j = 0; j < <size of joint_list>; j++) { 

    joint_order[j] = <order of the joint of index j, as defined in ABNT NBR 25606     , Table D.9> 

    joint_type[j] = <type of the joint of index j, as defined in ABNT NBR 25606     , Table D.9> 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 22 

 

    channel_list[j] = <list of channels in the joint of index j, using the same order in which they are declared> 

} 

 

bmb.number_of_frames = bvh.num_frames  

bmb.frame_time = bvh.frame_time 

 

for (f = 0; f < bvh.num_frames; f++) { 

    for (j = 0; j < <size of joint_list>; j++) { 

                  /** load movement information from MOTION section of BVH file */ 

        for (c = 0; c < <size of channel_list[j]>; c++) { 

            if (channel_list[j][c] == “XPosition”) XPosition = bvh.movement[f][j][c] 

            if (channel_list[j][c] == “YPosition”) YPosition = bvh.movement[f][j][c] 

            if (channel_list[j][c] == “ZPosition”) ZPosition = bvh.movement[f][j][c] 

            if (channel_list[j][c] == “XRotation”) XRotation = bvh.movement[f][j][c] 

            if (channel_list[j][c] == “YRotation”) YRotation = bvh.movement[f][j][c] 

            if (channel_list[j][c] == “ZRotation”) ZRotation = bvh.movement[f][j][c] 

        } 

        if (joint_type[j] == 0) { 

                          /** conversion code of translation movement in type-0 joint */ 

            bmb.Tx[f][joint_order[j]] = (Xposition + 0.5) * 65535 

            bmb.Ty[f][joint_order[j]] = (Yposition + 0.5) * 65535 

            bmb.Tz[f][joint_order[j]] = (Zposition + 0.5) * 65535 

        }  

        if (joint_type[j] == 0 || joint_type[j] == 1) { 

                          /** conversion code of rotation movement in type-0 and type-1 joint */ 

            (qw, qx, qy, qz) = euler2quaternion_yxz (Xrotation, Yrotation, Zrotation, (1,0,0), (0,1,0), (0,0,1)) 

            if (qw < 0) then qx = -qx, qy = -qy, qz = -qz 

            bmb.Qx[f][joint_order[j]] = qx * 32767 

            bmb.Qy[f][joint_order[j]] = qy * 32767 

            bmb.Qz[f][joint_order[j]] = qz * 32767 

        } else if (joint_type[j] == 2) { 

                          /** conversion code of rotation movement in type-2 joint */ 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 23 

 

            (qw, qx, qy, qz) = euler2quaternion_yxz (Xrotation, Yrotation, Zrotation, (1,0,0), (0,1,0), (0,0,1)) 

            (Ex, Ey, Ez) = quaternion2euler_xyz (qw, qx, qy, qz, geo.RX[joint_order[j]], geo.RY[joint_order[j]], 
geo.RZ[joint_order[j]]) 

            E2x = (Ex + 90) / 180 * 1023 

            E2y = (Ey + 90) / 180 * 1023 

            E2z = (Ez + 180) / 360 * 4095 

            bmb.E2[f][joint_order[j]] = (E2x << 22) + (E2y << 12) + E2z 

        } else if (type == 3) { 

                          /** conversion code of rotation movement in type-3 joint */ 

            (qw, qx, qy, qz) = euler2quaternion_yxz (Xrotation, Yrotation, Zrotation, (1,0,0), (0,1,0), (0,0,1)) 

            (Ex, Ey, Ez) = quaternion2euler_xyz (qw, qx, qy, qz, geo.RX[joint_order[j]], geo.RY[joint_order[j]], 
geo.RZ[joint_order[j]]) 

            bmb.E3[f][joint_order[j]] = (Ez + 180) / 360 * 255 

        } else if (type == 4) { 

                          /** conversion code of rotation movement in type-4 joint */ 

            E4x = (Xrotation + 90) / 180 * 255 

            E4y = (Yrotation + 90) / 180 * 255 

            bmb.E4[f][joint_order[j]] = (E4x << 8) + E4y 

        } 

    } 

} 

D.2.4.4 Conversion from SLMB body motion block to BVH 

The HIERARCHY section of the BVH file can be built using pre-defined joint information in ABNT NBR 25606     
, Tables D.1 and D.3. This section may be also gotten from avatarModel.bvh file, stored at 
https://drive.google.com/file/d/1lO30145dpupPgHvbyNfc5mPlWWPuIeEy/view?usp=sharing . 

The conversion from SLMB body motion block to the MOTION section of the BVH file is described by pseudo-
code below. The functions euler2quaternion_xyz and quaternion2euler_yxz are defined in 
D.2.3. 

 
/** Load joint information from HIERARCHY section of BVH file */ 

joint_list = <list of joints, using the same order in which they are declared in HIERARCHY section of BVH file> 

for (j = 0; j < <size of joint_list>; j++) { 

    joint_order[j] = <order of the joint of index j, as defined in ABNT NBR 25606     , Table D.9> 

    joint_type[j] = <type of the joint of index j, as defined in ABNT NBR 25606     , Table D.9> 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 24 

 

    channel_list[j] = <list of channels in the joint of index j, using the same order in which they are declared> 

} 

 

bvh.num_frames = bmb.number_of_frames  

bvh.frame_time = bmb.frame_time 

 

for (f = 0; f < bmb.number_of_frames; f++) { 

    for (j = 0; j < <size of joint_list>; j++) { 

    if (joint_type[j] == 0) { 

        /** conversion code of translation movement in type-0 joint */ 

        Xposition = bmb.Tx[f][joint_order[j]] / 65535 – 0.5 

        Yposition = bmb.Ty[f][joint_order[j]] / 65535 – 0.5 

        Zposition = bmb.Tz[f][joint_order[j]] / 65535 – 0.5 

    } else { 

        Xposition = geo.refpose_from_parent[joint_order[j]].x 

        Yposition = geo.refpose_from_parent[joint_order[j]].y 

        Zposition = geo.refpose_from_parent[joint_order[j]].z 

    }  

    if (joint_type[j] == 0 || joint_type[j] == 1) { 

        /** conversion code of rotation movement in type-0 and type-1 joint */ 

        qx = bmb.Qx[f][joint_order[j]] / 32767 

        qy = bmb.Qy[f][joint_order[j]] / 32767 

        qz = bmb.Qz[f][joint_order[j]] / 32767 

        qw = sqrt(1 - qx^2 - qy^2 - qz^2) 

        (Yrotation, Xrotation, Zrotation) = quaternion2euler_yxz (qw, qx, qy, qz, (1,0,0), (0,1,0), (0,0,1)) 

    } else if (joint_type[j] == 2) { 

        /** conversion code of rotation movement in type-2 joint */ 

        E2x = bmb.E2[f][joint_order[j]] >> 22 

        E2y = (bmb.E2[f][joint_order[j]] >> 12) & 0x03FF  

        E2z = bmb.E2[f][joint_order[j]] & 0x0FFF 

        Ex = E2x * 180 / 1023 – 90 

        Ey = E2y * 180 / 1023 – 90 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 25 

 

        Ez = E2z * 360 / 4095 - 180  

        (qw, qx, qy, qz) = euler2quaternion_xyz (Ex, Ey, Ez, geo.RX[joint_order[j]], geo.RY[joint_order[j]], 
geo.RZ[joint_order[j]]) 

        (Xrotation, Yrotation, Zrotation) = quaternion2euler_yxz (qw, qx, qy, qz, (1,0,0), (0,1,0), (0,0,1)) 

    } else if (joint_type[j] == 3) { 

        /** conversion code of rotation movement in type-3 joint */ 

        Ez = bmb.E3[f][joint_order[j]] * 360 / 255 - 180  

        (qw, qx, qy, qz) = euler2quaternion_xyz (0, 0, Ez, geo.RX[joint_order[j]], geo.RY[joint_order[j]], 
geo.RZ[joint_order[j]]) 

        (Xrotation, Yrotation, Zrotation) = quaternion2euler_yxz (qw, qx, qy, qz, (1,0,0), (0,1,0), (0,0,1)) 

    } else if (joint_type[j] == 4) { 

        /** conversion code of rotation movement in type-4 joint */ 

        E4x = bmb.E4[f][joint_order[j]] >> 8; 

        E4y = bmb.E4[f][joint_order[j]] & 0xFF 

        Xrotation = E4x * 180 / 255 – 90 

        Yrotation = E4y * 180 / 255 – 90 

        Zrotation = 0  

    } 

         /** fill movement information to MOTION section of BVH file */ 

    for (c=0; c< <size of channel_list[j]>; j++) { 

        if (channel_list[j][c] == “XPosition”) then bvh.movement[f][j][c] = XPosition 

        if (channel_list[j][c] == “YPosition”) then bvh.movement[f][j][c] = YPosition 

        if (channel_list[j][c] == “ZPosition”) then bvh.movement[f][j][c] = ZPosition 

        if (channel_list[j][c] == “XRotation”) then bvh.movement[f][j][c] = XRotation 

        if (channel_list[j][c] == “YPosition”) then bvh.movement[f][j][c] = YRotation 

        if (channel_list[j][c] == “ZRotation”) then bvh.movement[f][j][c] = ZRotation 

    } 

} 

D.2.5 JSON format conversion 

D.2.5.1 Description 

The AR Emoji SDK software [6] can animate the face of an avatar that pre-defines the same meshes and blend 
shapes as defined in ABNT NBR 25606     , Tables D.6 and D.7, using a file in JSON format.  



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 26 

 

The syntax of this file is defined in table D.3. 

Table D.3: Content of face movement JSON file 
Syntax Note Example 

FaceMotionJSON () {   

{  { 

    "name": name, name = name of animation     "name": "MAL", 

    "version": version, version = version of animation     "version": "1.2.3", 

    "blendShapes": [ 
        for (i = 0; i < num_meshes; i++) { 
            {mesh_declaration(i)}, 
        } 
    ], 

num_meshes = number of meshes 
 
mesh_declaration(i) = declaration 
of i-th mesh, as defined in Table D.4.  
 

    "blendShapes": [ 
        {"name": "head_GEO", (...)}, 
        {"name": "eyelash_GEO", (...)}, 
        {"name": "mouth_GEO", (...)}, 
        {"name": "eyebrow_l_GEO", (...)}, 
        {"name": "eyebrow_r_GEO", (...)} 
    ], 

        "shapesAmount": num_meshes, num_meshes = number of meshes     "shapesAmount": 5, 

        "time": [ 
            for (i = 0; i < num_frames; i++) { 
                time(i), 
            } 
        ], 

num_frames = number of frames in 
animation 
 
time(i) = time stamp of i-th frame, in 
milliseconds. 

     "time": [0, 30, 60, 90, 120], 

        "frames": num_frames num_frames = number of frames in 
animation 

    "frames": 5 

    }  } 

}   

 

The syntax of mesh_declaration(mesh) is defined in Table D.4: 

 

Table D.4: Syntax of mesh_declaration(mesh) 
Syntax Note Example 

mesh_declaration(mesh) {   

    "name": “mesh” mesh = mesh name "name":  "eyebrow_l_GEO", 

    "fullName": “mesh”  "fullName":  "eyebrow_l_GEO", 

    "blendShapeVersion": "3.1"  "blendShapeVersion": "3.1", 

    "morphTarget": "num_targets(mesh)”, num_targets(mesh) = number of 
blend shapes that can be applied to 
mesh, as defined in ABNT NBR 
25606     , Table D.7. 

"morphTarget": 9, 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 27 

 

Syntax Note Example 

    "morphName": [ 
        for (i = 0; i < num_targets(mesh); i ++) { 
            "target_name(mesh)(i)>", 
        } 
    ], 

num_targets(mesh) = number of 
blend shapes that can be applied to 
mesh. 
 
target_name(mesh)(i) = name 
of i-th blend shape of the mesh 

"morphName": [ 
    "BrowsDown_Left",  
    "BrowsDown_Right",  
    "BrowsUp_Center",  
    "BrowsUp_Left", 
    "BrowsUp_Right",  
    "Sneer",  
    "HAPPY_51",  
    "ANGRY_55",  
    "SAD_58" 
], 

    "key": [ 
        for (j = 0; j < num_frames; j++) { 
            [ 
                for (i = 0; i< num_targets(mesh); i ++) { 
                    weight(mesh)(i)(j), 
                } 
            ], 
        } 
    ] 

num_frames = number of frames in 
animation 
 
num_targets(mesh) = number of 
blend shapes of mesh 
 
weight(mesh)(i)(j) = weight of 
the i-th blend shape to mesh in j-th 
frame 
 
 

    "key": [ 
        [0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0], 
        [0.0, 0.00258091744, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 
        [0.0, 0.0104243588, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 
        [0.0, 0.0234753173, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 
        [0.0, 0.0415892377, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 
    ] 
 

    }  } 

}   

D.2.5.2 Parameters 

In the pseudo-codes that will be used for conversion for BVH files, it is assumed that the parameters starting 
with json are from the face movement JSON file format as defined in Tables D.3 an D.4. 

D.2.5.3 Conversion from JSON to SLMB face motion block 

The conversion code from JSON file to SLMB face motion block is described by the following pseudo-code: 

 
fmb.number_of_frames = json.frames 

for (f = 0; f < json.frames; f++) { 

    fmb.frame_time[f] = json.time[f] 

} 

/** load blend shapes from JSON file. Face Motion Block will start empty and be filled while JSON file is being parsed */ 

fmb.number_of_blend_shapes = 0 

for (m = 0; m < json.shapesAmount; m++) { 

    for (b = 0; b < json.blendShapes[m].morphTarget; b++) { 

        hasWeight = false 

        for (f = 0; f < json.frames; f++) { 

            weight = json.blendShapes[m].key[b][f] 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 28 

 

            if (weight != 0) { 

                if (not hasWeight) 

                { 

                    hasWeight = true 

                    fmb.number_of_blend_shapes++; 

                    target_index = fmb.number_of_blend_shapes - 1 

                    fmb.blend_shape_id[target_index] = <get blend shape id from mesh defined in blendShapes[m].name and blend shape 
defined in blendShapes[m].morphName[b], according to ABNT 25606     , Table D.11 > 

                    /** build frame list with frames whose weight is different than 0 */ 

                    number_of_frames = 0 

                } 

                number_of_frames++ 

                frame_index = number_of_frames - 1 

                frame_list[frame_index] = f 

                /** conversion formula for blend shape weight */ 

                fmb.blend_shape_weight [target_index][frame_index] = weight * 65535 

            } 

        } 

 

        if (not hasWeight) 

        { 

            /** convert the list of frames into a list of frame ranges */ 

            current_frame_defined = false  

            fmb.number_of_frame_ranges[target_index] = 0 

            for (k = 0; k < number_of_frames; k++) { 

                if (not current_frame_defined) { 

                    current_frame_defined = true 

                    first_frame = frame_list[k]; 

                } else if (frame_list[k] != current_frame + 1) { 

                    last_frame = current_frame 

                    fmb.number_of_frame_ranges[target_index]++  

                    range_index = fmb.number_of_frame_ranges[target_index] – 1 

                    fmb.frame_range_first[target_index][range_index] = first_frame 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 29 

 

                    fmb.frame_range_size[target_index][range_index] = last_frame - first_frame + 1 

                    first_frame = frame_list[i]; 

                } 

                current_frame = frame_list[k] 

            } 

            if (current_frame_defined) { 

                last_frame = current_frame 

                fmb.number_of_frame_ranges[target_index]++  

                range_index = fmb.number_of_frame_ranges[target_index] – 1 

                fmb.frame_range_first[target_index][range_index] = first_frame 

                fmb.frame_range_size[target_index][range_index] = last_frame - first_frame + 1 

            } 

        } 

    } 

} 

D.2.5.4 Conversion from SLMB Face Motion Block to JSON 

The conversion code from SLMB face motion block to JSON file is described by the following pseudo-code: 

 
json.frames  = fmb.number_of_frames  

for (f = 0; f < fmb.number_of_frames; f++) { 

    json.time[f] = fmb.frame_time[f] 

} 

 

json.shapesAmount = 0 

for (b = 0; b < fmb.number_of_blend_shapes; b++) { 

    mesh_name, target_name = <get mesh and blend shape names from fmb.blend_shape_id[b], according to ABNT 25606     , Table D.11> 

    /** check if mesh of name mesh_name is already registered and create an entry if it is not */ 

    mesh_index_defined = false 

    for (m = 0; m < json.shapesAmount; m++) { 

        if (json.blendShapes[m].name = mesh_name) { 

            mesh_index = m 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 30 

 

            mesh_index_defined = true 

        } 

    } 

    if (not mesh_index_defined){ 

        json.shapesAmount++ 

        mesh_index = json.shapesAmount - 1 

        json.blendShapes[mesh_index].name = mesh_name 

        json.blendShapes[mesh_index].morphTarget = 0 

    } 

    /** add target_name in the list of blend shapes */ 

    json.blendShapes[mesh_index].morphTarget++ 

    target_index = json.blendShapes[mesh_index].morphTarget - 1 

    json.blendShapes[mesh_index].morphName[target_index] = target_name 

 

    /** initialize list of weights with 0 for all frames */ 

    for (f = 0; f < fmb.number_of_frames; f++) { 

        json.blendShapes[mesh_index].key[target_index][f] = 0 

    } 

 

    /** fill list of weights according to data collected from Face Motion Block */ 

    frame_list_size = 0 

    for (r = 0; r < fmb.number_of_frame_ranges[b]; r++) { 

        for (f = 0; f < fmb.frame_ranges_size[b][r]; f++) { 

            frame = fmb.frame_ranges_first[b][r] + f 

            /** conversion formula for blend shape weight */ 

            json.blendShapes[mesh_index].key[target_index][frame] = fmb.number_of_blend_shapes[i][j] / 65535 

        } 

    } 

} 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 31 

 

D.2.6 glTF format conversion 

D.2.6.1 Description 

The avatarModel.zip file from https://drive.google.com/file/d/1yZjdmS832-
SDF8N7SQWQ2sR4UWELVvVA/view?usp=sharing provides an avatar sample with the skeleton, reference 
poses, face meshes, and blend shapes as defined in ABNT NBR 25606     , D.3 and D.4. Body and face motion 
information may be added to these files to produce movement in that avatar. The animation data should be 
defined according to the glTF™ 2.0 Specification [7].  

Though this avatar is presented in full body, the body movement produced by the SLMB file do not apply to 
lower member joints (legs and feet). 

The picture D.1 exemplifies the glTF animation data structure: 

 
Figure D.1: Animation data in glTF file format 

The binary file is composed of several sequential buffers that are mapped in the bufferViews array in glTF 
file. Each buffer contains bufferOffset and bufferLength attributes, referring to position and size of 
buffer in binary file.  

The accessors array maps the accessors that compose the animation content. Each accessor refers to a 
bufferView attribute by its index in bufferViews array when large amount of data is required (index 0 
refers to the first entry). 

The glTF file may have an animations array, which is a list of animations to be applied to the model. Each 
item in  animations array provides a samplers array and a channels array.  

The samplers array is a list of samplers, each one containing three attributes:  

● input - accessor that provides the list of frame times. 
● interpolation - method to transition from one frame to other. 
● output - accessor that provides the values of animated property for each frame. 

The channels array is a list of channels. Each channel connects a sampler to a target to be animated. 
The target structure contains the node and the path attributes.  

The nodes of the avatar model - which may be a skeleton joint or a mesh - are listed in the nodes array. So, 
the node attribute refers to the index of the node in nodes array.  



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 32 

 

The path attribute refers to the property to be animated, which can be: 

● translation - for joint nodes. 
● rotation - for joint nodes. 
● weights - for mesh node.  

The translation property value consists of 3(three) floating point numbers that define the X/Y/Z translation 
vector.  

The rotation property value consists of 4(four) floating point numbers that define the elements of the 
quaternion (W/X/Y/Z) that describes the rotation movement.  

The weights property value consists of a list of floating-point numbers that define the weights applied by 
each blend shape in the mesh. The order of the blend shapes in that list is the same as the targets array in 
the meshes array item.  

D.2.6.2 Parameters 

In the pseudo-codes that will be used for conversion for BVH files, it is assumed that the parameters starting 
with glTF are from the face movement glTF file format as defined in D.2.6.1. 

D.2.6.3 Conversion from SLMB to glTF 

The conversion code from SLMB body and face motion blocks to glTF animation file is described by the 
following pseudo-code: 

 
number_of_channels = 0 

number_of_samplers = 0 

 

for (j = 0; j < bmb.number_of_joints; j++) { 

    joint_type, joint_name = <joint type and name corresponding to order j, according to ABNT 25606, Table D.9> 

    if (joint_type == 0) { 

        /** register translation movement for type-0 joint */ 

        number_of_samplers++ 

        sampler_index = number_of_samplers – 1 

        for (f = 0; f < bmb.number_of_frames; f++) 

            glTF.animations.samplers[sampler_index].input.time[f] = f * bmb.frame_time 

            /** conversion formula for translation of type-0 joints */ 

            tx = bmb.Tx[j][f] / 65535 – 0.5 

            ty = bmb.Ty[j][f] / 65535 – 0.5 

            tz = bmb.Tz[j][f] / 65535 – 0.5 

            glTF.animations.samplers[sampler_index].output.translation[f][0] = tx 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 33 

 

            glTF.animations.samplers[sampler_index].output.translation[f][1] = ty 

            glTF.animations.samplers[sampler_index].output.translation[f][2] = tz 

        } 

        number_of_channels++ 

        channel_index = number_of_channels – 1 

        glTF.animations.channels[channel_index].sampler = sampler_index 

        glTF.animations.channels[channel_index].node = <index in glTF.nodes corresponding to joint_name> 

        glTF.animations.channels[channel_index].path = “translation” 

    } 

 

    /** register rotation movement */ 

    number_of_samplers++ 

    sampler_index = number_of_samplers – 1 

    for (f = 0; f < bmb.number_of_frames; f++) 

        glTF.animations.samplers[sampler_index].input.time[f] = f * bmb.frame_time 

        if (joint_type == 0 || joint_type == 1) { 

            /** conversion formula for rotation of type-0 and type-1 joints */ 

            qz = bmb.Qx[j][f]/32767 

            qy = bmb.Qy[j][f]/32767 

            qz = bmb.Qz[j][f]/32767 

            qw = sqrt(1 - qx^2 - qy^2 - qz^2) 

        } else if (joint_type == 2) { 

            /** conversion formula for rotation of type-2 joints */ 

            E2x = bmb.E2[j][f] << 22  

            E2y = (bmb.E2[j][f] << 12) & 0x3FF 

            E2z = bmb.E2[j][f] & 0xFFF 

            Ex = E2x * 180 / 1023 – 90 

            Ey = E2y * 180 / 1023 – 90 

            Ez = E2z * 360 / 4095 - 180  

            (qx, qy, qz, qw) = euler2quaternion_xyz (Ex, Ey, Ez, geo.RX, geo.RY, geo.RZ) 

        } else if (joint_type == 3) { 

            /** conversion formula for rotation of type-3 joints */ 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 34 

 

            Ez = bmb.E3[j][f] * 360 / 255 - 180  

            (qx, qy, qz, qw) = euler2quaternion_xyz (0, 0, Ez, geo.RX, geo.RY, geo.RZ) 

        } else if (joint_type == 4) { 

            /** conversion formula for rotation of type-4 joints */ 

            E4x = bmb.E4[j][f] << 8 

            E4y = bmb.E4[j][f] && 0xFF 

            Ex = E4x * 180 / 255 – 90 

            Ey = E4y * 180 / 255 – 90 

            (qx, qy, qz, qw) = euler2quaternion_xyz (Ex, Ey, 0, (1,0,0), (0,1,0), (0,0,1)) 

        }  

        glTF.animations.samplers[sampler_index].output.rotation[f][0] = qw 

        glTF.animations.samplers[sampler_index].output.rotation[f][1] = qx 

        glTF.animations.samplers[sampler_index].output.rotation[f][2] = qy 

        glTF.animations.samplers[sampler_index].output.rotation[f][3] = qz 

    } 

    number_of_channels++ 

    channel_index = number_of_channels – 1 

    glTF.animations.channels[channel_index].sampler = sampler_index 

    glTF.animations.channels[channel_index].node = <index in glTF.nodes corresponding to joint_name> 

    glTF.animations.channels[channel_index].path = “rotation” 

} 

 

/** construct list of meshes, blend shapes and frames defined in SLMB motion block */ 

number_of_meshes = 0 

for (b = 0; b < fmb.number_of_blend_shapes; b++) { 

    mesh_name, target_name = <get mesh and blend shape names from fmb.blend_shape_id[b], according to ABNT 25606     , Table D.11> 

 

    /** check if mesh was already registered in the list, create a new entry otherwise */ 

    mesh_index_defined = false 

    for (j=0; j<number_of_meshes; j++) { 

        if (mesh_list[j].name = mesh_name) { 

            mesh_index = j 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 35 

 

            mesh_index_defined = true 

        } 

    } 

    if (not mesh_index_defined) { 

        number_of_meshes++ 

        mesh_index = munber_of_meshes – 1 

        mesh_list[mesh_index].name = mesh_name 

        mesh_list[mesh_index].index = <index of glTF.meshes array whose name attribute corresponds to mesh_name> 

        mesh_list[mesh_index].number_of_targets = 0 

    } 

 

    /** add a new entry for blend shape */ 

    mesh_list[mesh_index].number_of_targets++ 

    target_index = mesh_list[mesh_index].number_of_targets – 1 

    mesh_list[mesh_index].targets[target_index].name = target_name 

    mesh_list[mesh_index].targets[target_index].number_of_frames = 0 

 

    /** fill the list of frames whose weight is different than 0 */ 

    for (r = 0; r < fmb.number_of_frame_ranges[b]; r++) { 

        for (f = 0; f < fmb.frame_range_size[b][r]; f++) { 

            mesh_list[mesh_index].targets[target_index].number_of_frames++ 

            frame_index = mesh_list[mesh_index].targets[target_index].number_of_frames – 1 

            mesh_list[mesh_index].targets[target_index].frames[frame_index].frame = fmb.frame_range_first[b][r] + f 

            mesh_list[mesh_index].targets[target_index].frames[frame_index].weight = 
fmb.blend_shape_weight[b][frame_index] 

        } 

    } 

} 

 

/** register face movements */ 

for (m = 0; m < number_of_meshes; m++) { 

    mesh_index = meshes_list[m].index 

    mesh_name = meshes_list[m].name 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 36 

 

    number_of_samplers++ 

    sampler_index = number_of_samplers – 1 

    /** initialize weights to 0 */ 

    for (f = 0; f < fmb.number_of_frames; f++) { 

        glTF.animations.samplers[sampler_index].input.time[f] = f * fmb.frame_time 

        for (b = 0; b < <size of glTF.meshes[mesh_index].extras.targetNames>; b++) { 

            glTF.animations.samplers[sampler_index].output.weights[f][b] = 0 

        } 

    } 

    /** fill weights with information collected in mesh list */ 

    for (b = 0; b < meshes_list[m].number_of_targets; b++) { 

        target_name = meshes_list[m].targets[b].name 

        target_index = <index of glTF.meshes[mesh_index].extras.targetNames array that corresponds to target_name> 

        for (f = 0; f < meshes_list[m].targets[b].number_of_frames; f++) { 

            frame = meshes_list[m].targets[b].frames[f].frame 

            /** conversion formula for blendshape weights */ 

            weight = meshes_list[m].targets[b].frames[f].weight / 65535 

            glTF.animations.samplers[sampler_index].output.weights[target_index][frame] = weight 

        } 

    }  

    number_of_channels++ 

    channel_index = number_of_channels – 1 

    glTF.animations.channels[channel_index].sampler = sampler_index 

    glTF.animations.channels[channel_index].node = <index in glTF.nodes corresponding to mesh_name > 

    glTF.animations.channels[channel_index].path = “weights” 

} 

D.3 Concept 

The Figure D.2 exemplifies the process of transmitting sign language motion data through TV 3.0 system. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 37 

 

 

Figure D.2 – Process of broadcasting sign language motion data 

This operational guideline is focused on a solution for sign language motion encoding based on a sign language 
dictionary. There are other possible solutions – for example, the face and body movements can be captured from 
a human sign language interpreter in real time. It also focuses on avatar engines that can read some of the known 
animation file formats, as described in D.2.  

From a TV broadcasting station, a sign language translator defines the sequence of glosses that expresses the 
audio/video context in sign language. Through a sign language dictionary, the body and face movements related 
to that sequence of signs are coded and a file is generated. This file is declared in an IMSC1 document and 
multiplexed with audio, video, and captions. The multiplexed stream is modulated and transmitted by the 
broadcaster. 

From TV receiver, the content received from broadcaster is demultiplexed, and the SLMB files are extracted from 
the TTML segments. These files feed an avatar animation engine, which animates a pre-defined avatar using the 
file contents. The result is the avatar moving its body and face to interpret the context in sign language.  

D.4 Transmission 

D.4.1 Sign language dictionary 

A sign language dictionary consists of a list of pairs composed of a gloss and the information needed to produce 
the sign that corresponds to that gloss. 

In the model proposed by this guideline for a sign language dictionary, each gloss is mapped to two files. One 
file contains information about body movement, and the other one contains information about face movement. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 38 

 

These movements allow a 3D avatar with the geometry defined in ABNT NBR 25606     , D.3 and D.4, to produce 
the sign related to the gloss. The body motion file will be stored in BVH format, as described in D.2.4.1. The face 
motion file will be stored in JSON format, as described in D.2.5.1. These file formats can be interpreted by the 
AR Emoji SDK software [6]. 

D.4.2 Sign language sentence construction 

The sentence construction process starts with a sequence of glosses that complete a sentence in sign language. 
These glosses SHOULD be part of the sign language dictionary.  

Example:  

● “EU” + “CASA” + “VOLTAR” is the sequence of glosses in Brazilian Sign Language (Libras) that 
expresses the sentence “I come back home”. 

The BVH and JSON files corresponding to each gloss are extracted from the sign language dictionary.  

Example:  

● Retrieve EU.bvh, EU.json, CASA.bvh, CASA.json, VOLTAR.bvh, VOLTAR.json from Libras 
dictionary. 

The BVH and JSON files are concatenated to construct the movement needed to express the sentence in sign 
language. 
 
Example:  

● EU.bvh + CASA.bvh + VOLTAR.bvh => EU_CASA_VOLTAR.bvh  
● EU.json + CASA.json + VOLTAR.json => EU_CASA_VOLTAR.json  

 
In concatenation process, it is recommended to treat the transition between signs, so animation during this 
transition is as fast and smooth as possible. 

D.4.3 Sign language motion bundle encoding 

BVH and JSON files can be converted to a SLMB file using the process described in Figure D.3. 

 

Figure D.3: Sign Language motion data encoding process. 

Initially, BVH file is condensed and presented in the BodyMotionBlock() format, according to ABNT 25606     
, Table D.8. Likewise, JSON file is condensed and presented in the FaceMotionBlock() format, according 
to ABNT NBR 25606     , table D.10.  



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 39 

 

Both body and face motion data are concatenated and encapsulated in MotionBundle() format, according 
to ABNT NBR 25606     , Table D.13. This bundle will be compressed with LZMA compression algorithm, resulting 
in the SLMB file. 

D.4.3.1 Body and face motion data condensation 

The information need to fill BodyMotionBlock() can be gotten from the BVH movement components, 
using the algorithm described in D.2.4.3. 

The information needed to fill FaceMotionBlock() can be gotten from the JSON file, using the algorithm 
described in D.2.5.3. 

D.4.3.2 Encapsulation 

Body and face motion blocks should be encapsulated into one block according to ABNT NBR 25606     , Table 
D.13. The blocks may be ordered according to Figure D.3. 

 

Figure D.3: Encapsulated motion data 

Considering that BodyMotionBlock() contains the body motion data for geometry ID 1 and that 
FaceMotionBlock() contains the face motion data for geometry ID 1, the MotionBundle() data can 
be structured as in Table D.5. 

Table D.5 – Example of MotionBundle() data 
Number of 

bytes 
Element Parameter Value Comment 

1 
Title 

header 0x60 
= (4-1) << 5 + 0  

(key size=4, payload size=0) 

4 key 0x53 0x4c 0x4d 0x42 = “SLMB” 

1 

Body motion 

header 0x3F 
= (2-1) << 5 + 0x1F  

(key size=2, payload size>31) 

2 key 0x01 0x01 = body motion, geometry ID 1 

4 payload_size bSize = size of BodyMotionBlock() in bytes 

bSize payload BodyMotionBlock()  

1 

Face Motion 

header 0x3F 
= (2-1) << 5 + 0x1F  

(key size=2, payload size>31) 

2 key 0x02 0x01 = face motion, geometry ID 1 

4 payload_size fSize = size of FaceMotionBlock() in bytes 

fSize payload FaceMotionBlock()  



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 40 

 

D.4.3.3 Compression 

Compression of MotionBundle() block to SLMB file may be done by the XZ Utils tool [8].  

MotionBundle() block is saved in a file with extension .slmb. 

● Example: save block in EU_CASA_VOLTAR.slmb file. 

File is compressed with xz command. 

● Example: 

# xz EU_CASA_VOLTAR.slmb 

Result is the SLMB file with .slmb.xz extension. 

● Example: result is EU_CASA_VOLTAR.slmb.xz file. 

D.4.4 Sign language motion file transport  

D.4.2.1 IMSC1 coding 

The sign language motion file transport process starts with the construction of an intermediate synchronic 
document, as defined in ABNT NBR 25606     , D.6. The TTML document can be coded in IMSC1 sign language 
motion profile to reference the SLMB files with timestamps for synchronization with audio/video content. 

Figure D.4 exemplifies the intermediate synchronic document exemplified in sign language motion profile. 

 

Figure D.4: Example of a document in sign language motion profile 

The attributes related to region (tts:origin, tts:extent, tts:backgroundColor) refer to the 
window in which alternate text will be presented. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 41 

 

The attributes related to timing (begin, end) refer to the beginning and end times of the animation. It is 
recommended that the difference between end and begin attribute values matches with the duration of the 
sign language motion. 

D.4.2.2 MP4 segmentation and encapsulation 

The MP4 segmentation and encapsulation of a IMSC1 document in sign language motion profile must follow 
the specification in ABNT NBR 25606     , D.7 and D.8. 

In segmentation process, the intermediate synchronic document is the base to produce the sign language 
motion segments. Each segment is related to a defined period. The div elements with 
sbtvd:signlanguagemotion attribute are filtered, so that only the elements that are presented within 
that period are included.  

For example, based on the intermediate synchronic document shown in Figure D.4, if 50-second segments are 
used: 

● Segment 1 (0s ~ 50s) – no sign language motion data 
● Segment 2 (50s ~ 100s) – sign language motion data for “BOA NOITE” 
● Segment 3 (100s ~ 150s) – sign language motion data for “BOA NOITE” and “EU CASA VOLTAR” 
● Segment 4 (150s ~ 200s) – sign language motion data for “EU CASA VOLTAR” 
● Segment 5 (200s ~ 250s) – no sign language motion data 

The sbtvd:signlanguagemotion attribute refers to the path to the corresponding SLMB file. So, it is 
necessary to include this file in the segment, along with TTML file. 

To fit more than one file in a single segment, the subsample resource in MP4 encapsulation should be used. 

● Files are loaded according to the paths defined in sbtvd:signlanguagemotion attribute of each 
div element. 

● TTML and binary files are concatenated in segment after MP4 header. 
● TTML file is numbered with subsample=0. The subsequent binary files are numbered with 

subsample=1, 2, etc. 
● The subs folder in MP4 header contains information about the number of subsamples, where each 

subsample begins and where it ends.  
● The value of sbtvd:signlanguagemotion attribute is changed to urn:mpeg:14496-

30:subs:<subsample number> 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 42 

 

 

Figure D.5: Example of an IMSC1 segment with sign language motion profile 

D.4.2.3 Media presentation description 

Declaration of the TTML segments with IMSC1 sign language motion profile in MPD file should follow the same 
pattern used in other IMSC1 profiles, with the following adjustments: 

● SupplementalProperty entry with schemeIdUri attribute set to 
http://dashif.org/guidelines/dash-atsc-closedcaption and value attribute with  
profile set to 2 

● codecs attribute set to stpp.ttml.im1m 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 43 

 

 

Figure D.6: Example of a IMSC1 Sign Language Motion profile stream declaration in a .MPD file 

In case sign language window should be presented inside video window: 

● SL_Window_Presentation attribute should be set to true 
● SL_Window_Position_X, SL_Window_Position_Y, SL_Window_Width and 

SL_Window_Position_Height attributes should define the position and the size of the sign 
language window. 

● Video_Window_Position_X, Video_Window_Position_Y, Video_Window_Width and 
Video_Window_Position_Height attributes should define the position and the size of the main 
language window. 

The body geometry IDs defined in the body motion blocks that compose the SLMB files (refer to ABNT NBR 
25606     , Table D.13) may be included in SL_AvatarBodyGeometryIds. Likewise, the face geometry IDs 
defined in the face motion blocks that compose the SLMB files may be included in 
SL_AvatarFaceGeometryIds. 

D.5 Reception 

D.5.1 Sign language motion file extraction 

D.5.1.1 MPEG-DASH player 

A MPEG-DASH player which can interpret the AdaptationSet entries for TTML segments in MPD file can 
also interpret AdaptationSet entries for segments in IMSC1 Sign Language Motion profile, as far as it can 
interpret correctly the new settings related to this profile. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 44 

 

● In SupplementalProperty entry in which schemaIdUri is set to 
http://dashif.org/guidelines/dash-atsc-closedcaption 

o value with profile:2 
● codecs attribute set to stpp.ttml.im1m 

In addition, the following information may be collected from SupplementalProperty entries: 

● Sign language window presentation:  
o If value of SL_WindowPresentation is true: 

▪ Sign language window should be presented according to the values of the 
SL_Window_Position_X, SL_Window_Position_Y, SL_Window_Width and 
SL_Window_Position_Height attributes. 

▪ Main video window should be presented according to the values of the 
Video_Window_Position_X, Video_Window_Position_Y, 
Video_Window_Width and Video_Window_Position_Height attributes. 

o If value of SL_WindowPresentation is false or not defined: 
▪ Main video window and Sign Language window should be presented according to ABNT 

25606     , 8.1. 
● Body and face geometry IDs that are compatible with SLMB file, according to the values of 

SL_AvatarBodyGeometryIds and SL_AvatarFaceGeometryIds, respectively. This information 
may be used to select the avatars that can use the motion data provided by SLMB file. 

D.5.1.2 MP4 parser 

A MP4 parser that is compliant with ISO/IEC 14496-30 [12], Section 5, should be able to extract all its sub-
samples that are embedded in ISOBMFF-encapsulated segment. For IMSC1 sign language motion profile, data 
extracted from the sub-sample 0 should be saved to a TTML file (text), and data extracted from the subsequent 
sub-samples should be saved to SLMB files (binary).  

D.5.1.3 TTML parser 

A TTML parser can parse a segment in IMSC1 sign language motion profile, as far as it interprets correctly the 
new attributes from this profile: 

● ttp:profile attribute (value 
http://forumsbtvd.org.br/ns/ttml/profile/imsc1/signlanguagemotion identifies 
the sign language motion profile) 

● xmlns:sbtvd attribute (value http://forumsbtvd.org.br/schemas/sbtvd-slm to include 
schema for sbtvd namespace) 

● sbtvd:signlanguagemotion attribute: (urn:mpeg:14496-30:subs:<subsample 
number>).  

o subsample number refers to the index of the subsample where SLMB file is located.  
o For example, subsample number = 1 refers to the first SLMB file, subsample number = 2 

refers to second SLMB file, and so on. 

TTML parser may extract timed animation data from TTML segment, which may be used to configure the avatar 
presentation engine: 

● SLMB file - animation data 
● Start timestamp - define when to start animation 
● End timestamp (optional) - define when to stop animation 
● Alternate text (optional) – define a text to be presented in screen in case sign language avatar window 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 45 

 

cannot be presented. 
● Presentation window information (optional) – define the window in which alternate text should be 

presented. 

D.5.2 Sign language motion bundle decoding 

SLMB files can be decoded using the process described in Figure D.7: 

 

Figure D.7: Sign language motion data decoding process. 

Initially, SLMB file is uncompressed using LZMA compression algorithm, resulting in a block in 
MotionBundle() format. Then, body and face animation data from blocks in BodyMotionBlock() and 
FaceMotionBlock() formats are extracted from uncompressed block. 

The body animation data extracted from BodyMotionBlock() may be converted to data in a known 
animation file format. This operational guideline describes conversion to BVH and glTF file formats.  

Likewise, the face animation data extracted from FaceMotionBlock() may be converted to data in a known 
animation file format. This operational guideline describes conversion to JSON and glTF file formats. 

The resulting files can feed the animation engine to animate the avatar and produce the sentence in sign 
language. 

D.5.2.1 Uncompression 

Uncompression of SLMB file to MotionBundle() block may be done by the XZ Utils tool [8]. 

● Check that SLMB file has extension .slmb.xz. (ex. EU_CASA_VOLTAR.slmb.xz) 
● Uncompress file using unxz command. (ex. unxz EU_CASA_VOLTAR.slmb.xz). 
● Resulting file with slmb extension. (ex. EU_CASA_VOLTAR.slmb) contains the 

MotionBundle() block). 

D.5.2.2 Motion block extraction 

Extraction of face and body motion data from MotionBundle() block from ABNT NBR 25606     , Table D.13, 
may be done by parsing the header of each block. The key field in header indicates the block type – described 
in ABNT NBR 25606, Table D.12, whereas payload_size field indicates begin and end of the block. The next 
block header starts right after the end of the previous block. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 46 

 

pos = 0 

element_size = 0 

while (pos < <size of MotionBundle >) { 

    element_size = element_size + 1 

    index = element_size - 1 

    key_size = (MotionBundle[pos] >> 5) + 1 

    payload_size = MotionBundle[pos] & 0x1F 

    pos = pos + 1 

    element[index].key = MotionBundle[pos to pos + key_size - 1] 

    pos = pos + element[index].key_size 

    if (payload_size == 0x1F) { 

        payload_size = MotionBundle[pos to pos + 3] 

        pos = pos + 4 

    }  

    element[index].payload = MotionBundle[pos to pos + payload_size - 1] 

    pos = pos + payload_size 

} 

 

for (index = 0; index < element_size; index++) { 

    if (element[index].key == {0x01, 0x01}) { 

        BodyMotionBlock = element[index].payload 

    } 

    if (element[index].key == {0x02, 0x01}) { 

        FaceMotionBlock = element[index].payload 

    } 

} 

It is important to select the body and face motion elements that are compatible with the body and face geometry 
IDs of the avatar that will be used for animation. 

D.5.2.3 File conversion 

The blocks extracted from SLMB file can be converted to some file formats that can be imported to some of the 
known animation software. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 47 

 

A BVH file may be created from the BodyMotionBlock() data. The information needed to fill data in the 
BVH file can be gotten with the algorithm described in D.2.4.4. 

A JSON file may be created from the FaceMotionBlock() data. The information needed to fill data in the 
JSON file can be gotten with the algorithm described in D.2.5.4. 

A glTF file may be created from both BodyMotionBlock() and FaceMotionBlock() data. The 
information needed to fill data in the JSON file can be gotten with the algorithm described in D.2.6.3. 

D.5.3 3D Avatar Engines 

Outcome from conversion done in D.4.2 may be used by some animation engines. 

BVH format files in the structure defined in D.2.4.1 can be imported by almost all major motion capture 
software, such as Blender [9], Maya [10] and AR Emoji SDK [6] 

Figure D.8 shows the BVH file opened by Blender. 

 

  
Figure D.8: BVH file imported to Blender software 

JSON format files in the structure defined in section D.2.5.2 are recognized by AR Emoji SDK [6]. 

glTF format files can be imported in almost all major motion capture software, such as Blender [9], Maya [10] 
and AR Emoji SDK [6]. It can also be viewed by glTF Viewer [11]. Figure D.9 shows a glTF file opened by glTF 
Viewer. 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 48 

 

 
Figure D.9: glTF file imported to glTF Viewer software 

 

A skin may be drawn around the skeleton defined in ABNT NBR 25606     , D.3, so that the visual appearance 
of avatar is customized in receiver. The skin should be designed to deform according to the skeleton 
movement.  

ABNT NBR 25606     , D.4.4, defines objectively the deformations provided by the blend shapes but is based on 
a pre-defined face geometry. A different face geometry may be used for animation by receiver, as far as 
deformations done by the blend shapes in this face geometry are equivalent to the effect seen in reference file. 
Figure D.10 is an example of the EyeBlink_Left blend shape applied to different face geometries. 

   
Figure D.10: Example of equivalent blend shape applied in different face geometries  

 

It is recommended to treat the beginning and the end of the body/face movements, so that the transition 
between the sentences and transition from/to idle state are as smooth as possible. 

Bibliography 

[1] ABNT NBR 25606     , TV 3.0 – Closed signing 



 

 

TV 3.0 OPERATIONAL GUIDELINES 
CLOSED SIGNING 
JANUARY 2026 

 

 

NO NORMATIVE VALUE 49 

 

[2] Quaternion to Euler angles conversion: A direct, general and computationally efficient 
method, Evandro Bernardes and Stéphane Viollet. Available 
at  <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276302>. 

[3] Motion Capture File Formats explained, M. Meredith, S. Maddock. Available at 
<https://staffwww.dcs.shef.ac.uk/people/S.Maddock/publications/Motion%20Capture%20File%2
0Formats%20Explained.pdf> 

[4] BVH Motion Capture Data Animated, CHAN Ka Chun et al. Available at 
<https://www.cs.cityu.edu.hk/~howard/Teaching/CS4185-5185-2007-SemA/Group12/BVH.html> 

[5] Biovision BVH. Available at <https://research.cs.wisc.edu/graphics/Courses/cs-838-
1999/Jeff/BVH.html> 

[6] Galaxy AR Emoji SDK for Unity. Available at <https://developer.samsung.com/galaxy-ar-
emoji/overview.html> 

[7] glTF™ 2.0 Specification. The Khronos® 3D Formats Working Group Version 2.0.1, 2021-10-11 
23:01:57Z. Available at <https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html> 

[8] XZ Utils. Available at <https://tukaani.org/xz> 

[9] Blender. Available at <https://www.blender.org> 

[10] Autodesk Maya. Available at <https://www.autodesk.com/products/maya/overview?term=1-
YEAR&tab=subscription>  

[11] glTF Viewer. Available at <     https://gltf-viewer.donmccurdy.com/> 

[12] ISO/IEC-14496-30:2018, Information technology – Coding of audio-visual objects – Part 30: Timed 
text and other visual overlays in ISO base media file format 

 


